18 research outputs found

    Antigen-dependent Proliferation of CD4+ CD25+ Regulatory T Cells In Vivo

    Get PDF
    The failure of CD25+ regulatory T cells (Tregs) to proliferate after T cell receptor (TCR) stimulation in vitro has lead to their classification as naturally anergic. Here we use Tregs expressing a transgenic TCR to show that despite anergy in vitro, Tregs proliferate in response to immunization in vivo. Tregs also proliferate and accumulate locally in response to transgenically expressed tissue antigen whereas their CD25− counterparts are depleted at such sites. Collectively, these data suggest that the anergic state that characterizes CD25+ Tregs in vitro may not accurately reflect their responsiveness in vivo. These observations support a model in which Treg population dynamics are shaped by the local antigenic environment

    Cooperative Roles of CTLA-4 and Regulatory T Cells in Tolerance to an Islet Cell Antigen

    Get PDF
    Adoptive transfer of ovalbumin (OVA)-specific T cells from the DO.11 TCR transgenic mouse on a Rag−/− background into mice expressing OVA in pancreatic islet cells induces acute insulitis and diabetes only if endogenous lymphocytes, including regulatory T cells, are removed. When wild-type OVA-specific/Rag−/− T cells, which are all CD25−, are transferred into islet antigen–expressing mice, peripheral immunization with OVA in adjuvant is needed to induce diabetes. In contrast, naive CTLA-4−/−/Rag−/− OVA-specific T cells (also CD25−) develop into Th1 effectors and induce disease upon recognition of the self-antigen alone. These results suggest that CTLA-4 functions to increase the activation threshold of autoreactive T cells, because in its absence self-antigen is sufficient to trigger autoimmunity without peripheral immunization. Further, CTLA-4 and regulatory T cells act cooperatively to maintain tolerance, indicating that the function of CTLA-4 is independent of regulatory cells, and deficiency of both is required to induce pathologic immune responses against the islet self-antigen

    Treg and CTLA-4: Two intertwining pathways to immune tolerance.

    Get PDF
    Both the CTLA-4 pathway and regulatory T cells (Treg) are essential for the control of immune homeostasis. Their therapeutic relevance is highlighted by the increasing use of anti-CTLA-4 antibody in tumor therapy and the development of Treg cell transfer strategies for use in autoimmunity and transplantation settings. The CTLA-4 pathway first came to the attention of the immunological community in 1995 with the discovery that mice deficient in Ctla-4 suffered a fatal lymphoproliferative syndrome. Eight years later, mice lacking the critical Treg transcription factor Foxp3 were shown to exhibit a remarkably similar phenotype. Much of the debate since has centered on the question of whether Treg suppressive function requires CTLA-4. The finding that it does in some settings but not in others has provoked controversy and inevitable polarization of opinion. In this article, I suggest that CTLA-4 and Treg represent complementary and largely overlapping mechanisms of immune tolerance. I argue that Treg commonly use CTLA-4 to effect suppression, however CTLA-4 can also function in the non-Treg compartment while Treg can invoke CTLA-4-independent mechanisms of suppression. The notion that Foxp3 and CTLA-4 direct independent programs of immune regulation, which in practice overlap to a significant extent, will hopefully help move us towards a better appreciation of the underlying biology and therapeutic significance of these pathways

    Follicular helper T cell signature in type 1 diabetes

    Get PDF
    The strong genetic association between particular HLA alleles and type 1 diabetes (T1D) indicates a key role for CD4+ T cells in disease; however, the differentiation state of the responsible T cells is unclear. T cell differentiation originally was considered a dichotomy between Th1 and Th2 cells, with Th1 cells deemed culpable for autoimmune islet destruction. Now, multiple additional T cell differentiation fates are recognized with distinct roles. Here, we used a transgenic mouse model of diabetes to probe the gene expression profile of islet-specific T cells by microarray and identified a clear follicular helper T (Tfh) cell differentiation signature. Introduction of T cells with a Tfh cell phenotype from diabetic animals efficiently transferred diabetes to recipient animals. Furthermore, memory T cells from patients with T1D expressed elevated levels of Tfh cell markers, including CXCR5, ICOS, PDCD1, BCL6, and IL21. Defects in the IL-2 pathway are associated with T1D, and IL-2 inhibits Tfh cell differentiation in mice. Consistent with these previous observations, we found that IL-2 inhibited human Tfh cell differentiation and identified a relationship between IL-2 sensitivity in T cells from patients with T1D and acquisition of a Tfh cell phenotype. Together, these findings identify a Tfh cell signature in autoimmune diabetes and suggest that this population could be used as a biomarker and potentially targeted for T1D interventions.This work was funded by an MRC Senior Fellowship (to L.S.K. Walker), a project grant from JDRF (to L.S.K. Walker and P. Narendran), and a studentship from Diabetes UK (to L.S.K. Walker and P. Narendran). L. Wardzinski and A. Kogimtzis were supported by a Wellcome Trust project grant (to L.S.K. Walker). M. Ono is a BBSRC David Philips fellow.Published versio

    Confusing signals: Recent progress in CTLA-4 biology

    Get PDF
    The mechanism of action of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) remains surprisingly unclear. Regulatory T (Treg) cells can use CTLA-4 to elicit suppression; however, CTLA-4 also operates in conventional T cells, reputedly by triggering inhibitory signals. Recently, interactions mediated via the CTLA-4 cytoplasmic domain have been shown to preferentially affect Treg cells, yet other evidence suggests that the extracellular domain of CTLA-4 is sufficient to elicit suppression. Here, we discuss these paradoxical findings in the context of CTLA-4-mediated ligand regulation. We propose that the function of CTLA-4 cytoplasmic domain is not to transmit inhibitory signals but to precisely control the turnover, cellular location, and membrane delivery of CTLA-4 to facilitate its central function: regulating the access of CD28 to their shared ligands

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers

    Get PDF
    Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10−8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers
    corecore